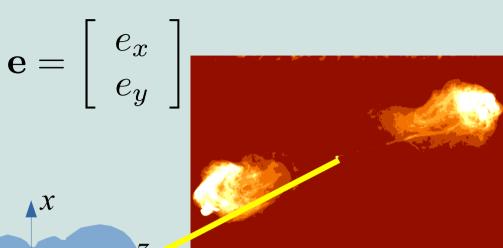
Instrumentation Fundamentals of Radio Interferometry

Griffin Foster SKA SA/Rhodes University

NASSP 2016

Any measurement is a noisy filter which results in a loss of information.

Multiple propagation effects can be described by chaining up Jones matrices:



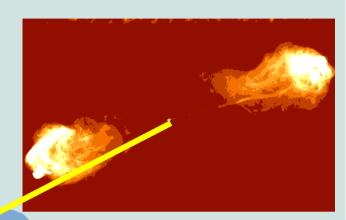
X

Z

X

A dual-receptor feed measures two complex voltages (polarizations):

$$\mathbf{v} = \left[\begin{array}{c} v_1 \\ v_2 \end{array} \right]$$



We may further assume the voltage conversion process is also linear. Therefore we have:

$$\mathbf{v} = \mathbf{J}_n \mathbf{J}_{n-1} \dots \mathbf{J}_1 \mathbf{e} = \mathbf{J}_{\mathbf{sys}} \mathbf{e}$$

NASSP 2016

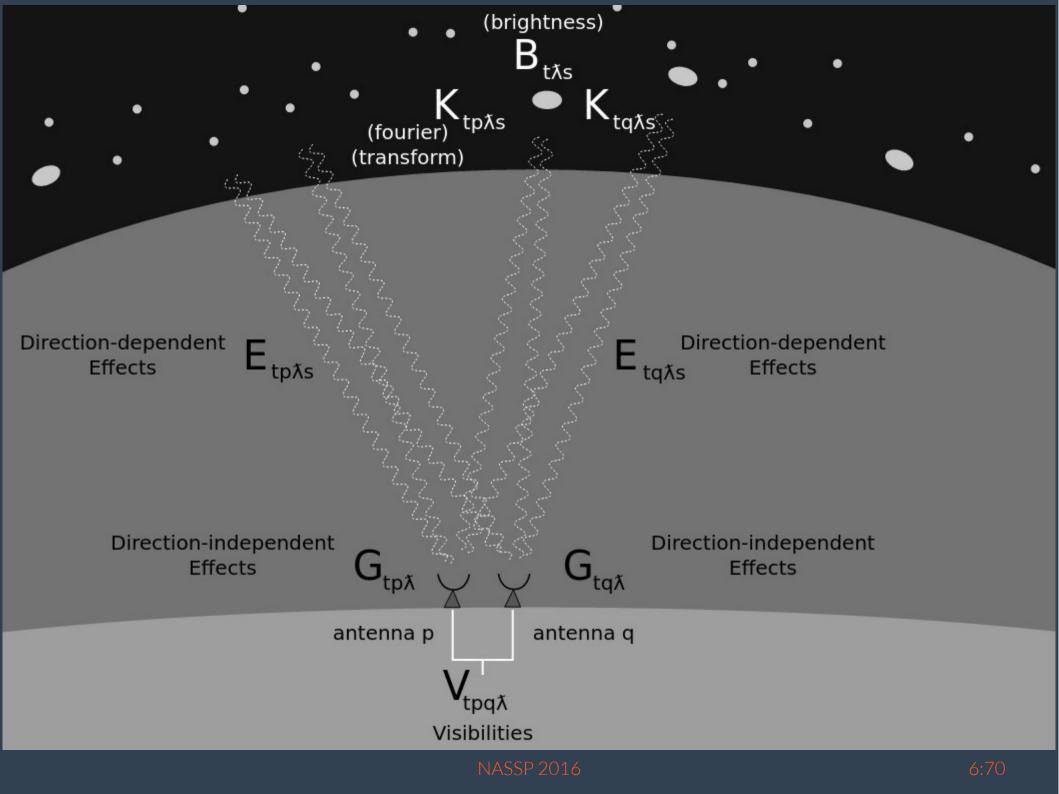
 $\mathbf{e} = \begin{vmatrix} e_x \\ e_y \end{vmatrix}$

X

Jones Sequences

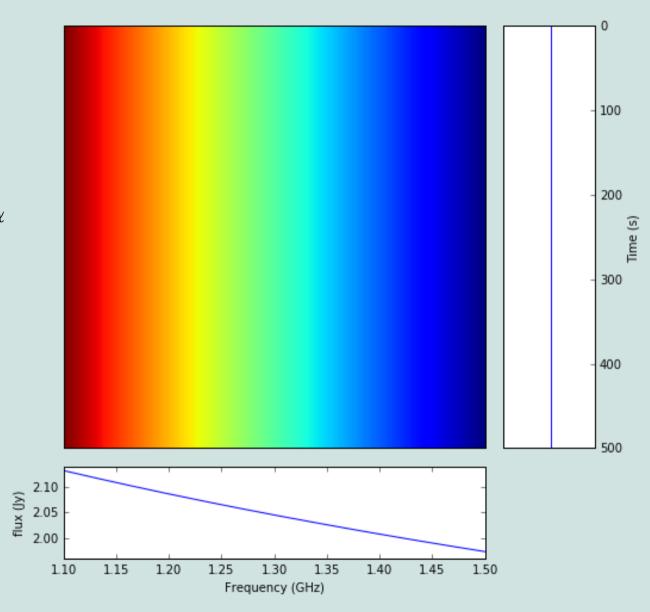
$$\mathbf{v} = \mathbf{J}_n \mathbf{J}_{n-1} \dots \mathbf{J}_1 \mathbf{e} = \mathbf{J}_{sys} \mathbf{e}$$
$$\mathbf{J}_{sys} = \mathbf{G} \mathbf{B} \mathbf{D} \mathbf{E} \mathbf{K} \mathbf{P} \mathbf{Z} \mathbf{F}$$

- This is just an example!
- Order is important: matrices don't (in general) commute
 Must follow physical order of propagation effects
- Some specific matrices do commute
 - Scalar matrix (K-Jones) commutes with everything
 - Diagonal matrices commute among themselves
 - Rotation matrices commute among themselves



An Idealized Source

Idealized Source Spectrum



$$I(\nu) = I_0 \left(\frac{\nu}{\nu_0}\right)^{-\alpha}$$

NASSP 2016

Johnson-Nyquist noise source (thermal source):

$$P = k_B T \Delta \nu$$

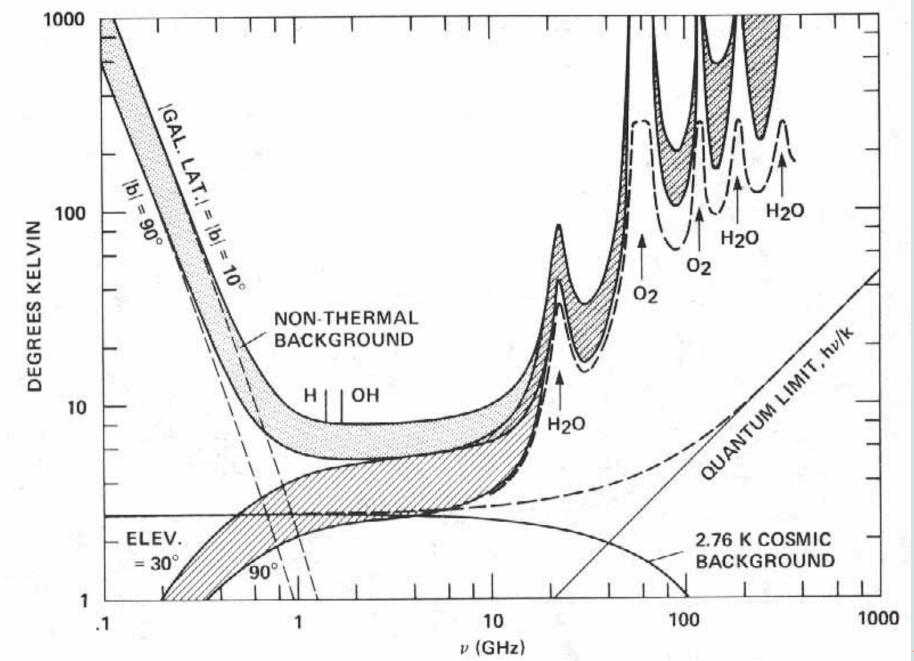
For a fixed bandwidth, rearranging:

$$T = \frac{P}{k_B \Delta \nu}$$

 $T_{\rm sys} = T_{\rm sky} + T_{\rm atmosphere} + T_{\rm spillover} + T_{\rm rx} + \dots$

T_{sky}: radio sky background (synchrotron, CMB (2.76K), ...) T_{atmosphere}: atmospheric foregrounds (important at mm wavelengths) T_{spillover}: pick-up of ~300K ground in the side and back-lobes T_{rx}: receiver temperature from the Friis Cascade Noise Equation

System Temperature



 $T_{passive}$: passive components (cables, connectors, OMT) before the LNA T_{LNA} : Low-Noise Amplifier temperature T_{amp} : secondary amplification/attenuation temperature

 G_{LNA} : gain of the LNA G_{feed} , $G_{passive}$: feed and passive 'gain' (related to efficiency)

$$T_{rx} = T_{feed} + \frac{T_{passive}}{G_{feed}} + \frac{T_{LNA}}{G_{feed}G_{passive}} + \frac{T_{amp}}{G_{feed}G_{passive}G_{LNA}} + \dots$$

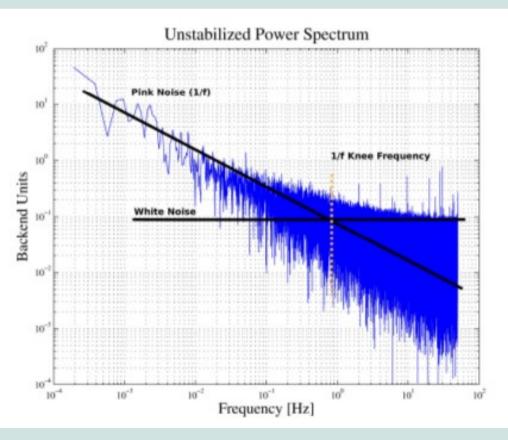
Radiometer Equation

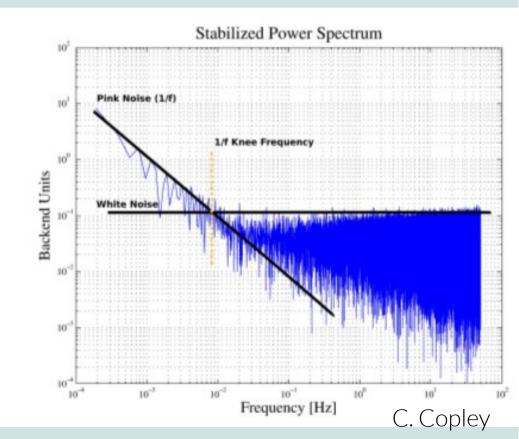
$$\sigma_T = \frac{T_{\rm sys}}{\sqrt{\Delta\nu\tau}}$$

 $\boldsymbol{\sigma}_{_{\!\mathsf{T}}}$: residual (root-mean-square) in the measurement

 $\Delta \nu$: bandwidth of observation (Hz) τ : integration time (seconds)

 \rightarrow the smaller the T_{sys} the shorter the required observation time



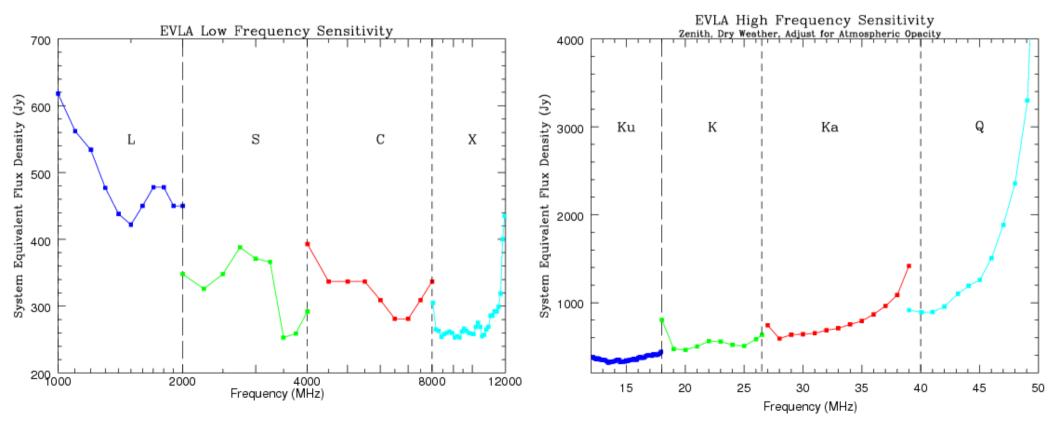


System Equivalent Flux Density (SEFD)

flux density of a radio source that doubles the system temperature

$$\text{SEFD} = \frac{T_{\text{sys}}}{G_{eff}} = \frac{2k_B\eta T_{\text{sys}}}{A_{eff}}$$

Very Large Array SEFD



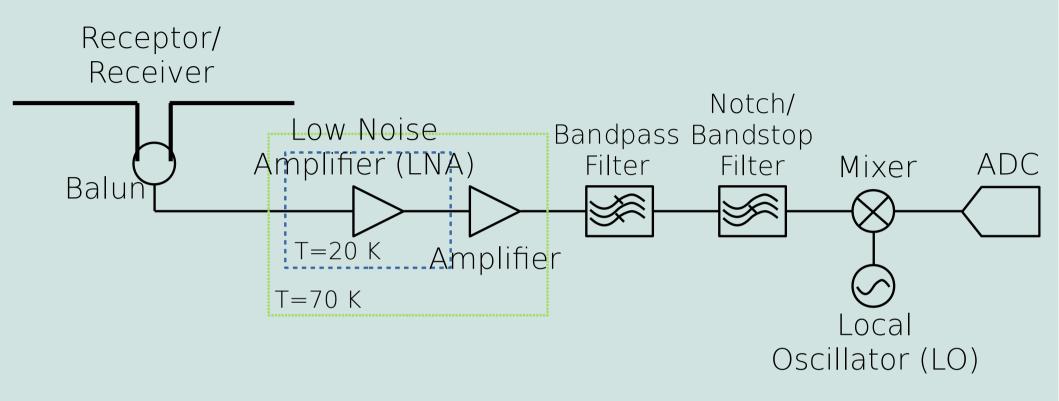
https://science.nrao.edu/facilities/vla/docs/manuals/oss/performance/sensitivity

Amplitude and attenuation due to the system electronics.

$$\mathbf{G}'(t,\nu) \approx \mathbf{G}(t) \cdot \mathbf{B}(\nu) = \begin{pmatrix} G_x(t) & 0\\ 0 & G_y(t) \end{pmatrix} \cdot \begin{pmatrix} B_x(\nu) & 0\\ 0 & B_y(\nu) \end{pmatrix}$$

The total, time- and frequency-dependent gain Jones matrix is often split into a gain (G) and bandpass (B) Jones matrices.

Analogue Front-end (G- and B-Jones)

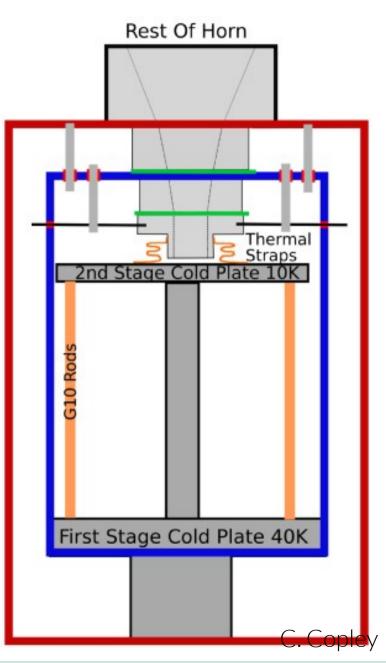


$$T_{\rm rx} = T_{\rm feed} + \frac{T_{\rm passive}}{G_{\rm feed}} + \frac{T_{\rm LNA}}{G_{\rm feed}G_{\rm passive}} + \frac{T_{\rm amp}}{G_{\rm feed}G_{\rm passive}G_{\rm LNA}} + \dots$$

Analogue Front-end (G- and B-Jones)

Local Oscillator (LO)

Cryostat



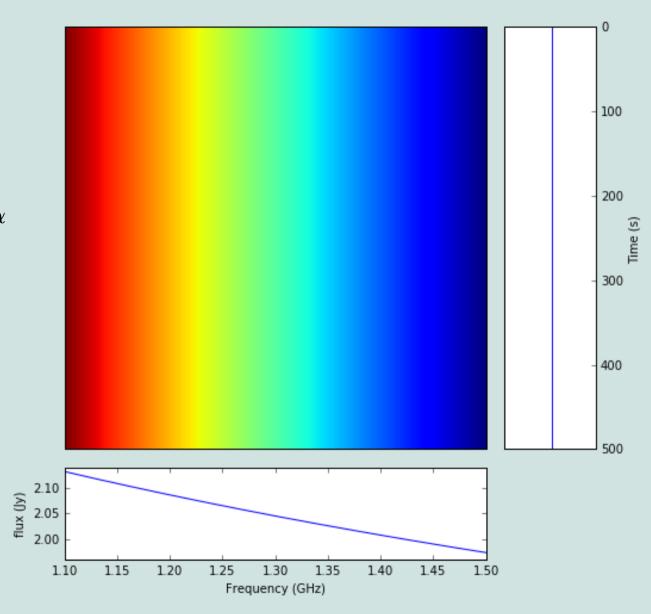
Power: $P_{dB} = 10 \log_{10} \left(\frac{P}{P_0}\right)$

Voltage Amplitude:

$$P_{dB} = 20 \log_{10} \left(\frac{V}{V_0}\right)$$

An Idealized Source

Idealized Source Spectrum

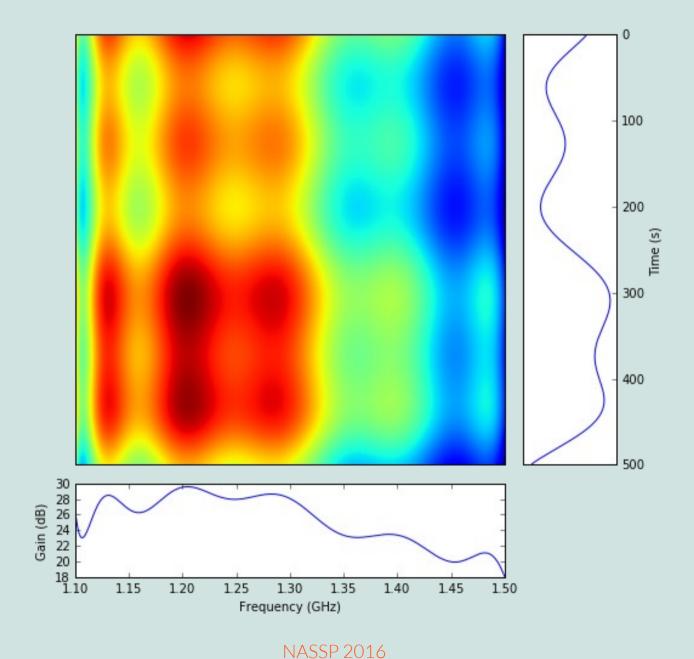


$$I(\nu) = I_0 \left(\frac{\nu}{\nu_0}\right)^{-o}$$

NASSP 2016

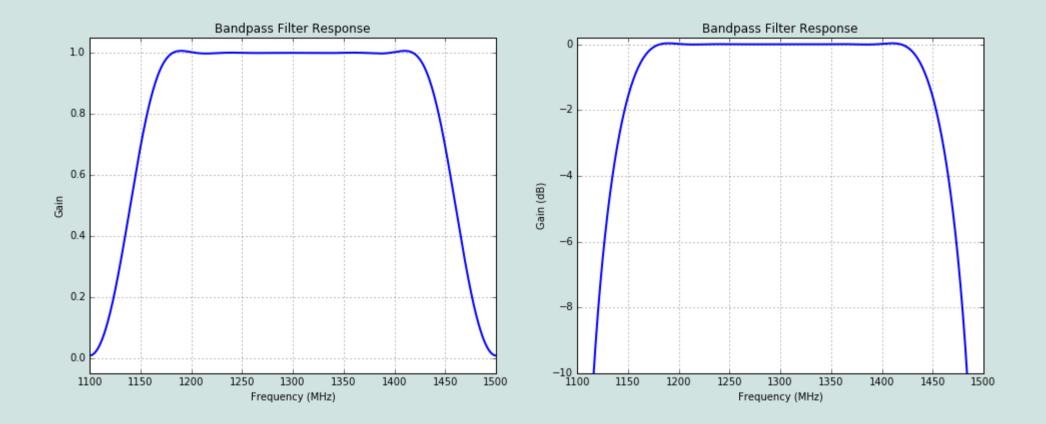
Low Noise Amplifier (LNA) Response

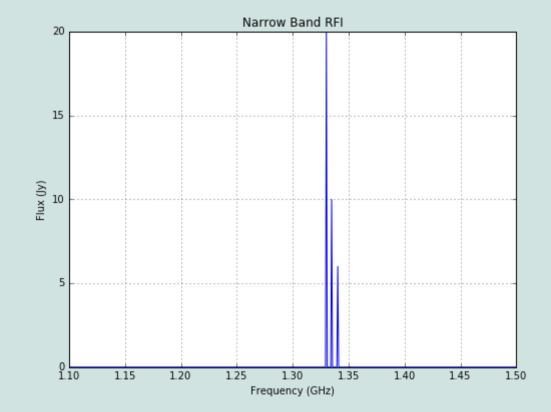
LNA Response

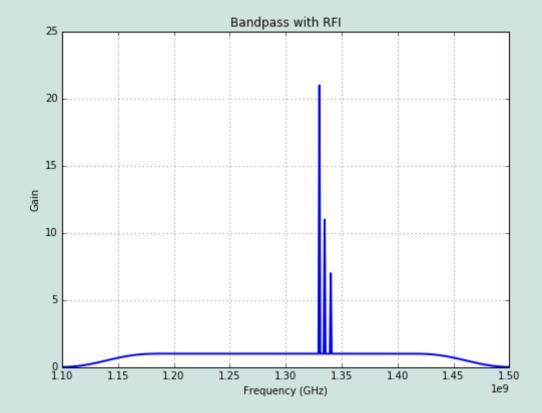


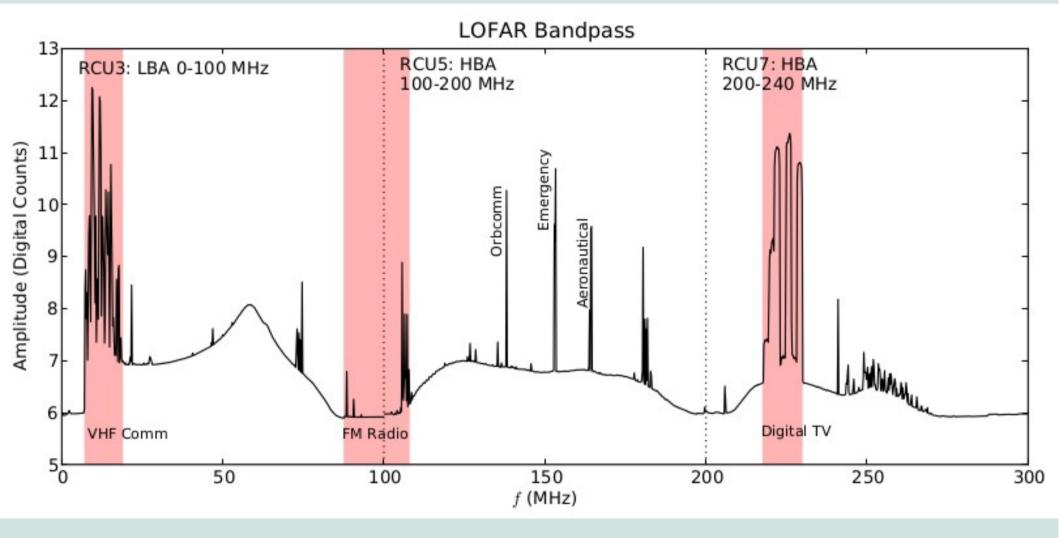
Low Noise Amplifier (LNA)

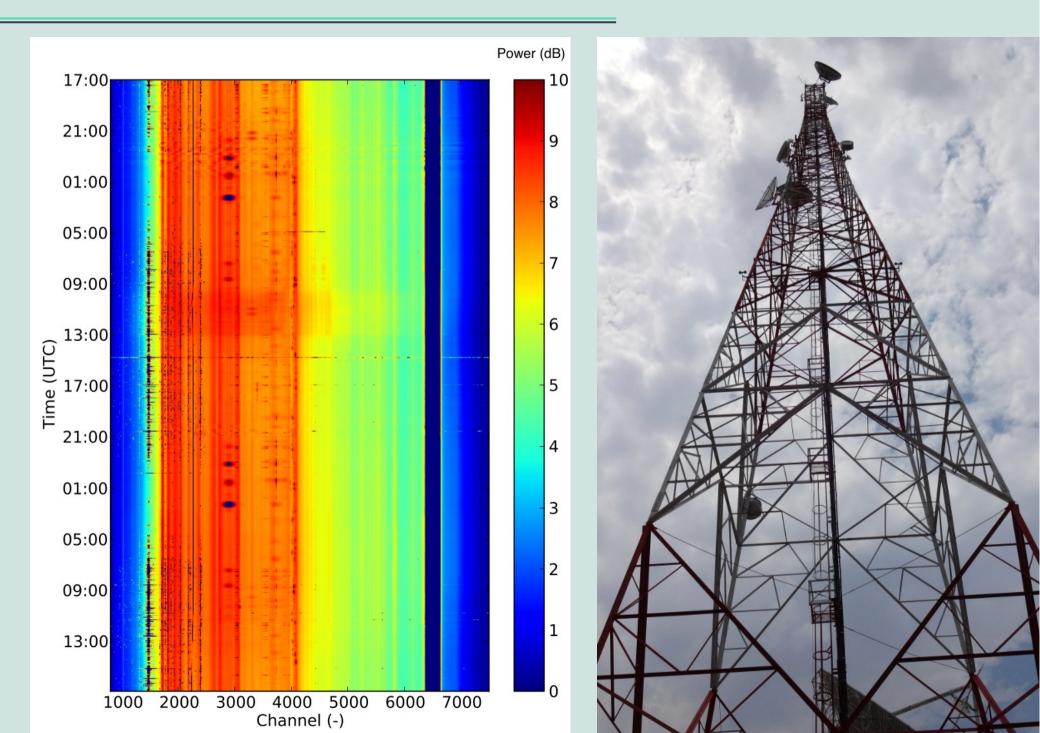
NASSP 2016



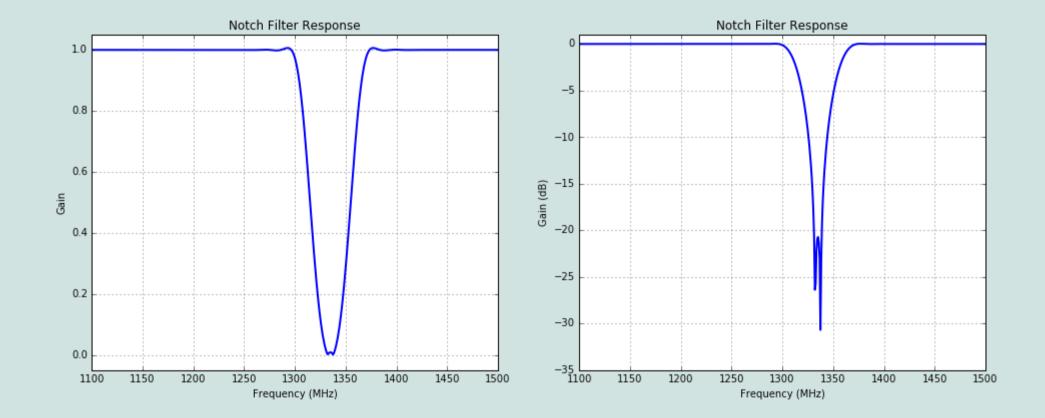




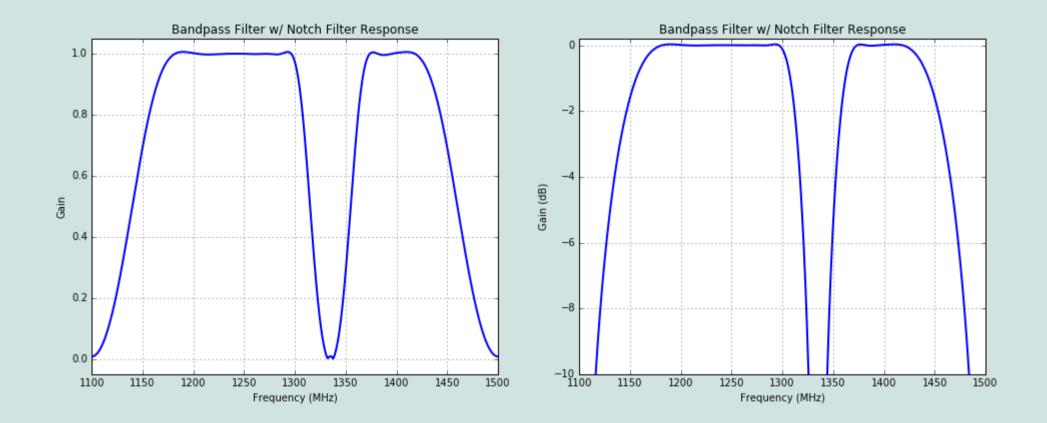




Notch/Bandstop Filter

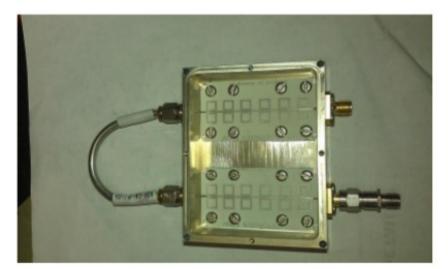


Notch/Bandstop Filter



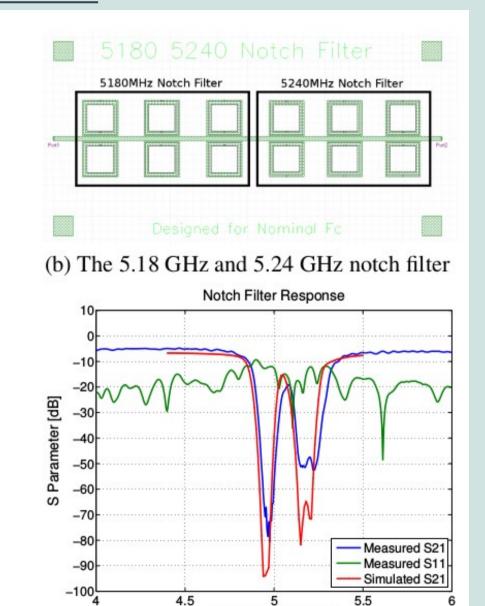
Notch/Bandstop Filter

(a) The 4.79 GHz and 4.92 GHz notch filter



(c) Manufactured notch filter (with 6 dB attenuator to improve input match)

NAUDI ZUIU

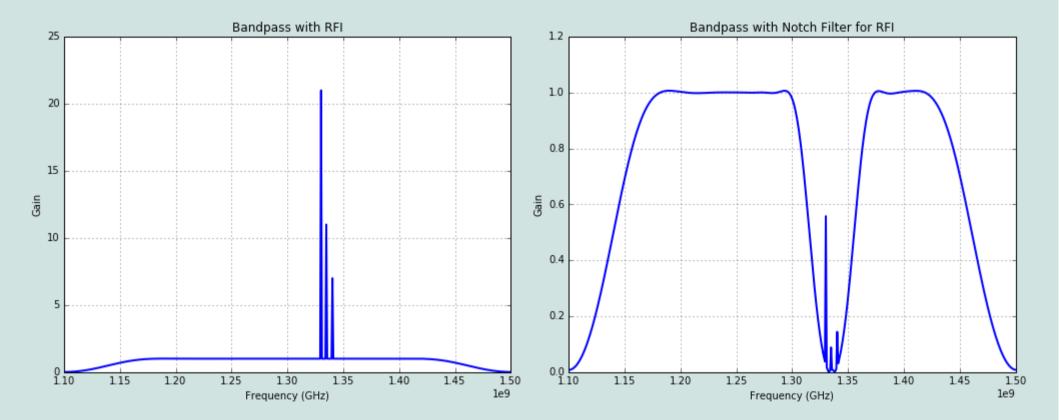


5 Frequency [GHz]

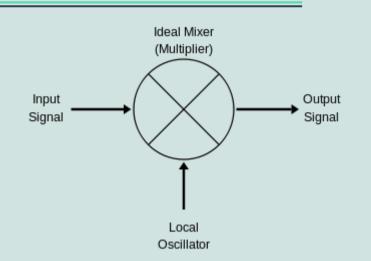
C. Copley

(d) Measured vs Simulated Responses

Notch Filter Applied to RFI



Hetrodyne Mixing

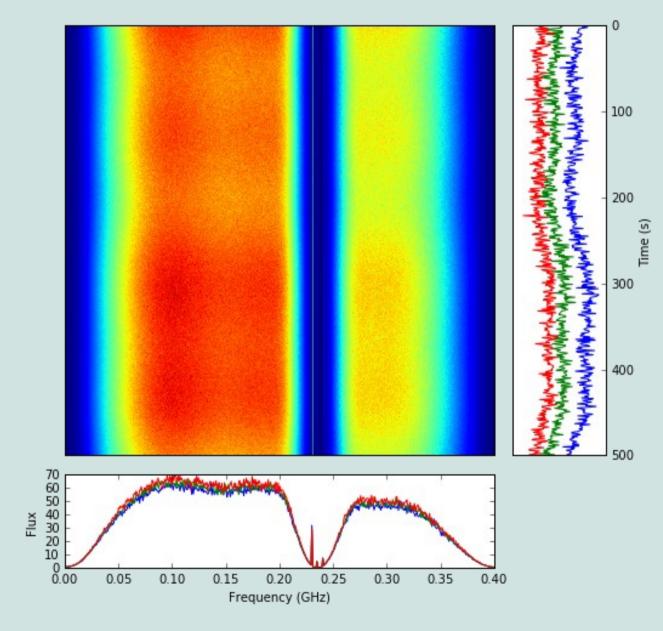


By trigonometric identity the multiplication of two sine waves is: $\sin(2\pi\nu_{\rm RF}) \cdot \sin(2\pi\nu_{\rm LO}) = \frac{1}{2}\cos(2\pi(\nu_{\rm RF} - \nu_{\rm LO})t) + \frac{1}{2}\cos(2\pi(\nu_{\rm RF} + \nu_{\rm LO})t)$ Applying a low pass filter: $\sin(2\pi\nu_{\rm RF}) \cdot \sin(2\pi\nu_{\rm LO}) = \frac{1}{2}\cos(2\pi(\nu_{\rm RF} - \nu_{\rm LO})t) + \frac{1}{2}\cos(2\pi(\nu_{\rm RF} + \nu_{\rm LO})t)$ The output frequency is: $\nu_{\rm IF} \approx \frac{1}{2}\cos(2\pi(\nu_{\rm RF} - \nu_{\rm LO})t)$

NASSP 2016

Add in System Noise

Observed Spectrum



NASSP 2016

Analogue Response to an Ideal Source

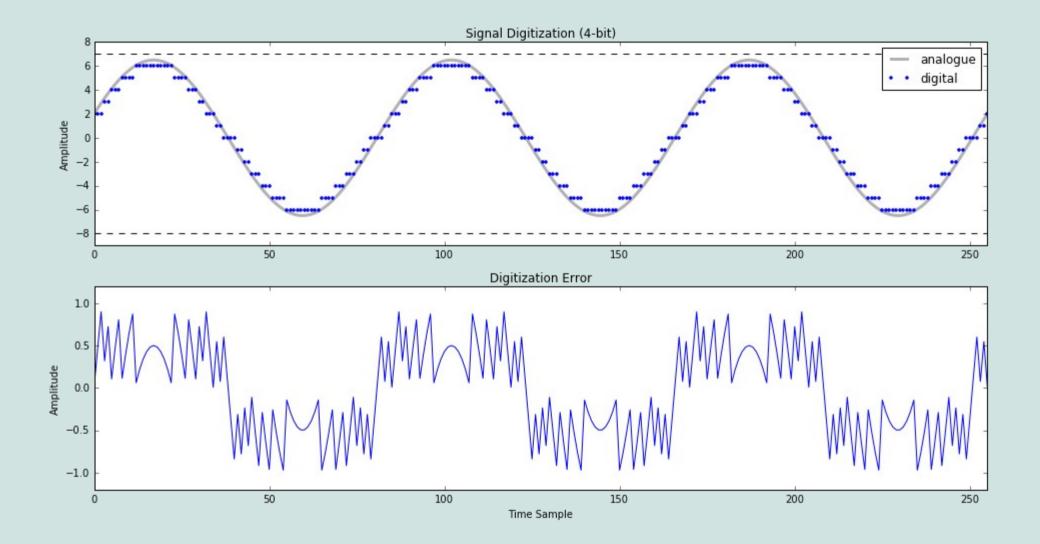
Idealized Source Spectrum

flux (Jy)

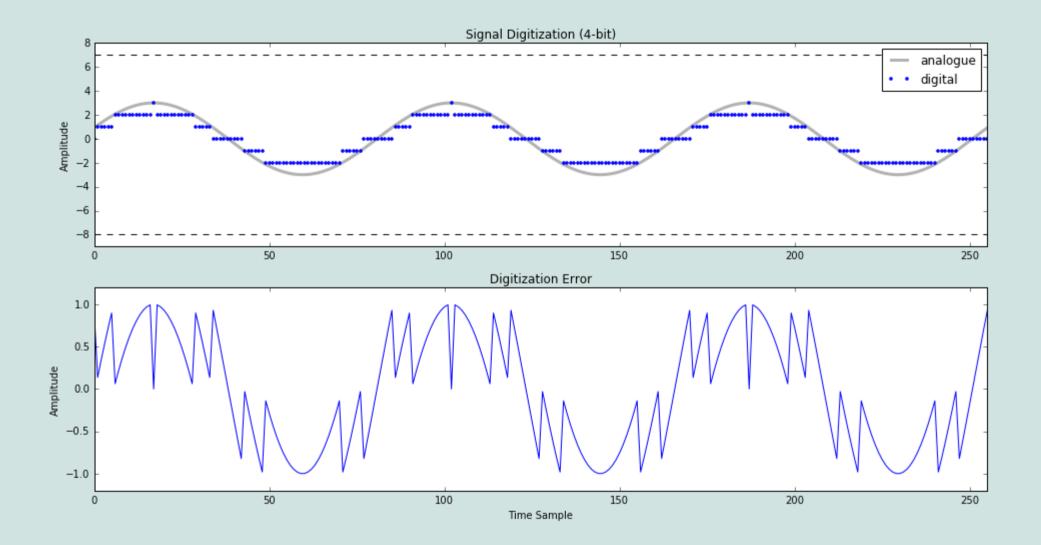
0 0 1-4MMMM 100 100 Phillippine and 200 200 Time (s) Time (s) 300 300 400 400 500 500 70 50 40 30 20 10 2.10 2.05 Flux 2.00 0.00 1.15 1.35 1.45 1.10 1.20 1.25 1.30 1.40 1.50 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 Frequency (GHz) Frequency (GHz)

Observed Spectrum

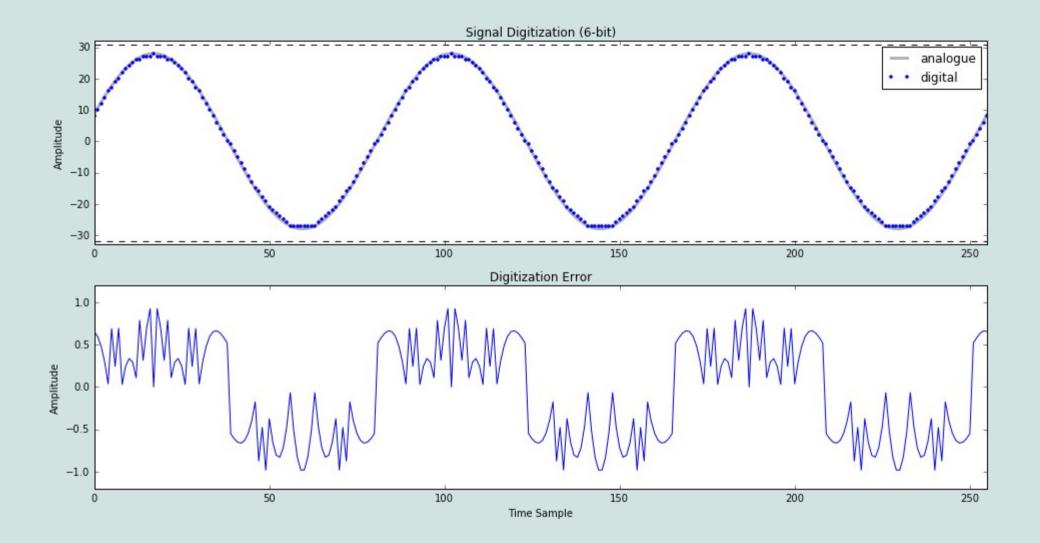
Digitization (Ideal Dynamic Range)



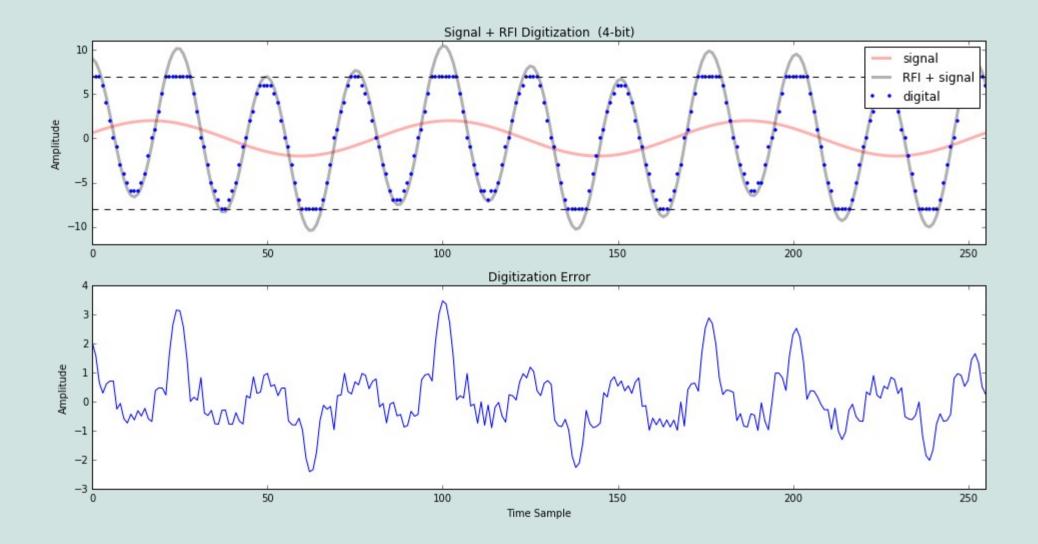
Digitization (Limited Dynamic Range)

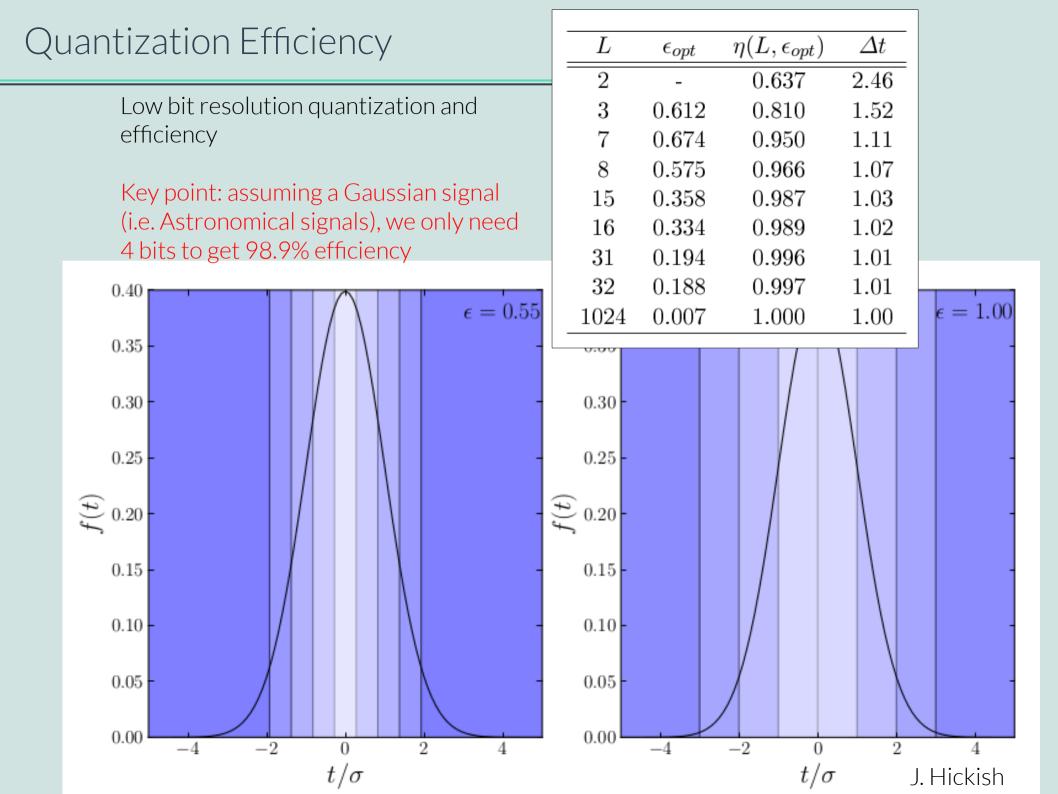


Digitization (Increased Dynamic Range)



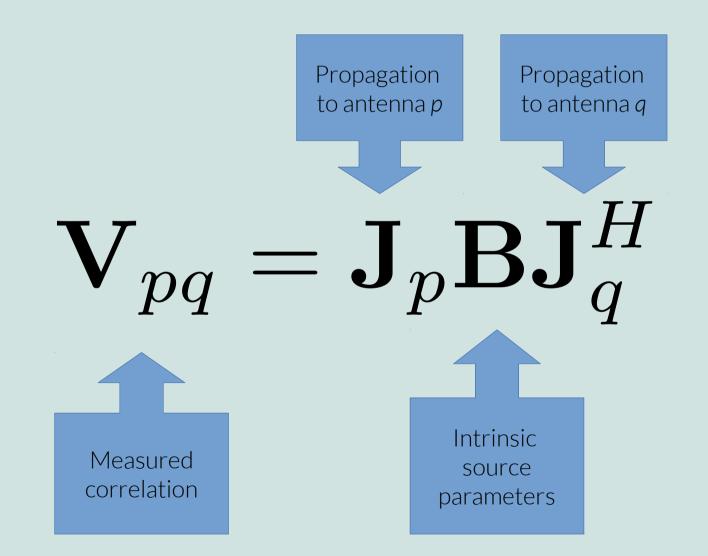
Digitization (Saturation)



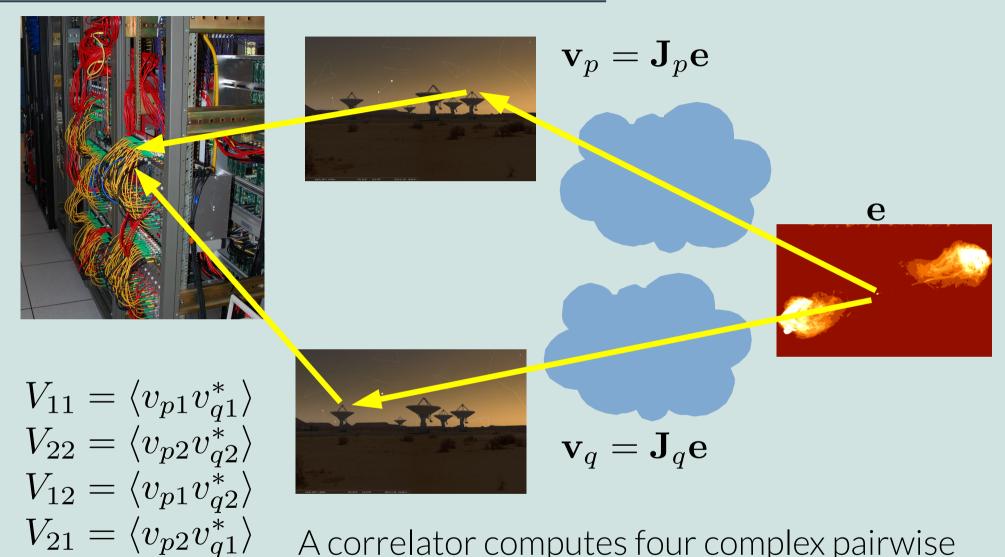


The Basic RIME

This gives us the basic form of the RIME:



Correlation



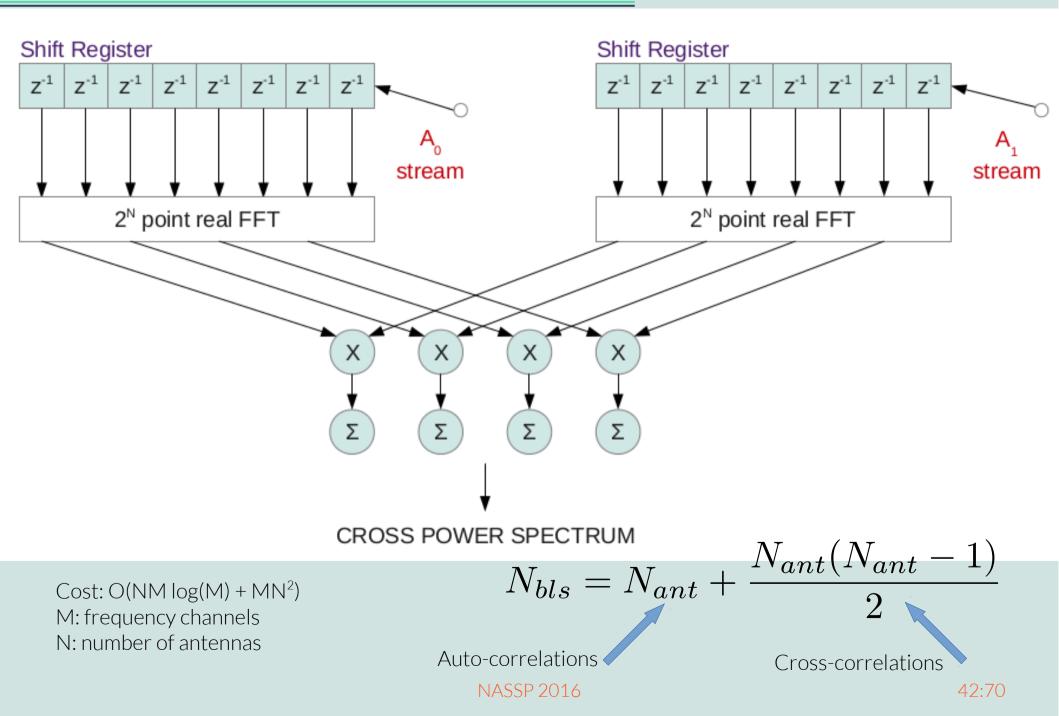
A correlator computes four complex pairwise products called *correlations*.

Convolution Theorem and Correlation

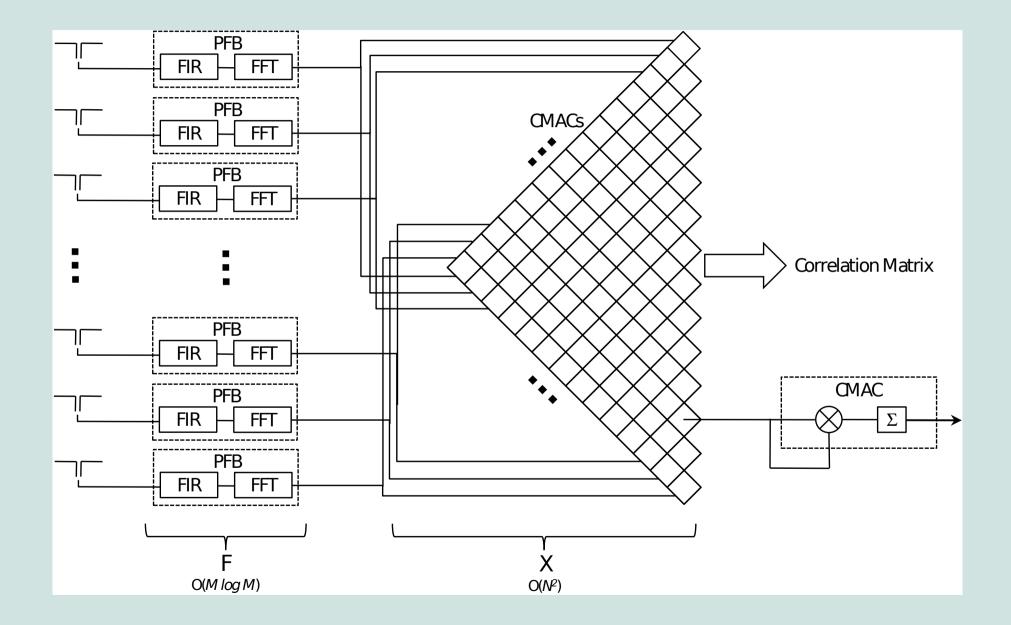
To compute visibilities, we would like to correlate (convolve) for each antenna pair (f,g) $\mathcal{F}\left\{f \ast g\right\} = \mathcal{F}\left\{f\right\} \mathcal{F}\left\{g\right\}$ Convolution Theorem: $f * g = \int f(x)g(z-x)\mathrm{d}x$ Where the convolution symbol is defined as: FFT Time Sampled Freq. Domain Sky Signal Spectra CMAC CMAC Convolved Cross Correlated **Time signals** Power Spectra FFT

NASSP 2016

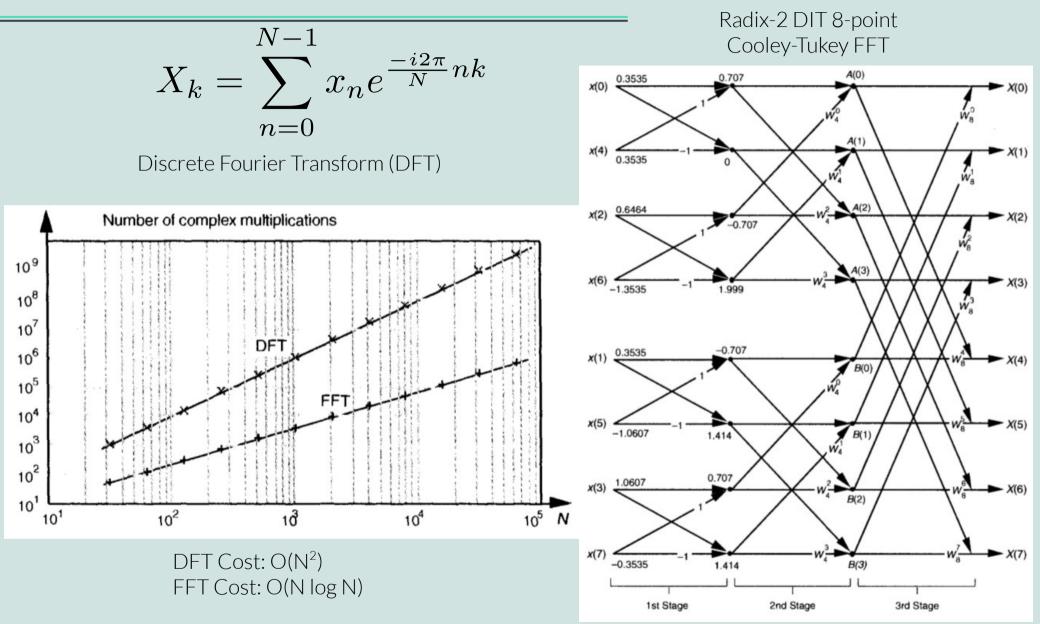
FX Correlator



FX Correlator



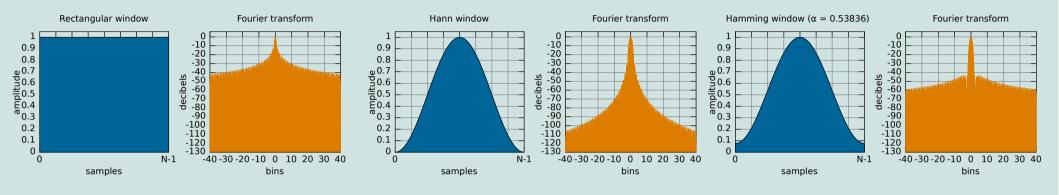
Fast Fourier Transform (FFT)

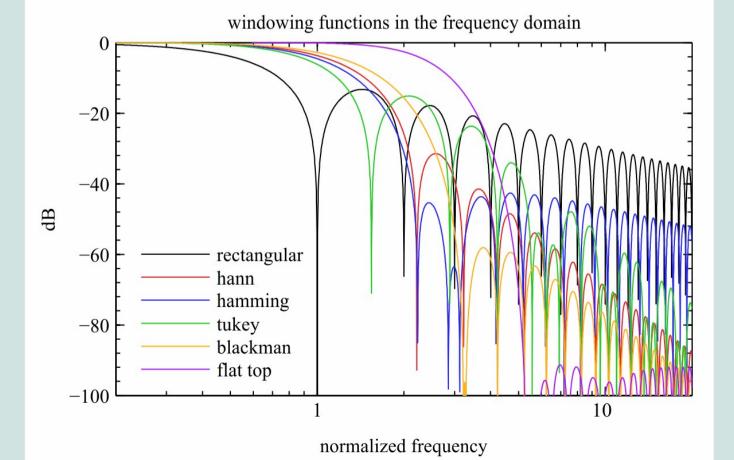


Almost all FFT implementations use a radix-2 system, so FFT of size 2^N are ideal. Try to avoid Fourier transforms of prime number size.

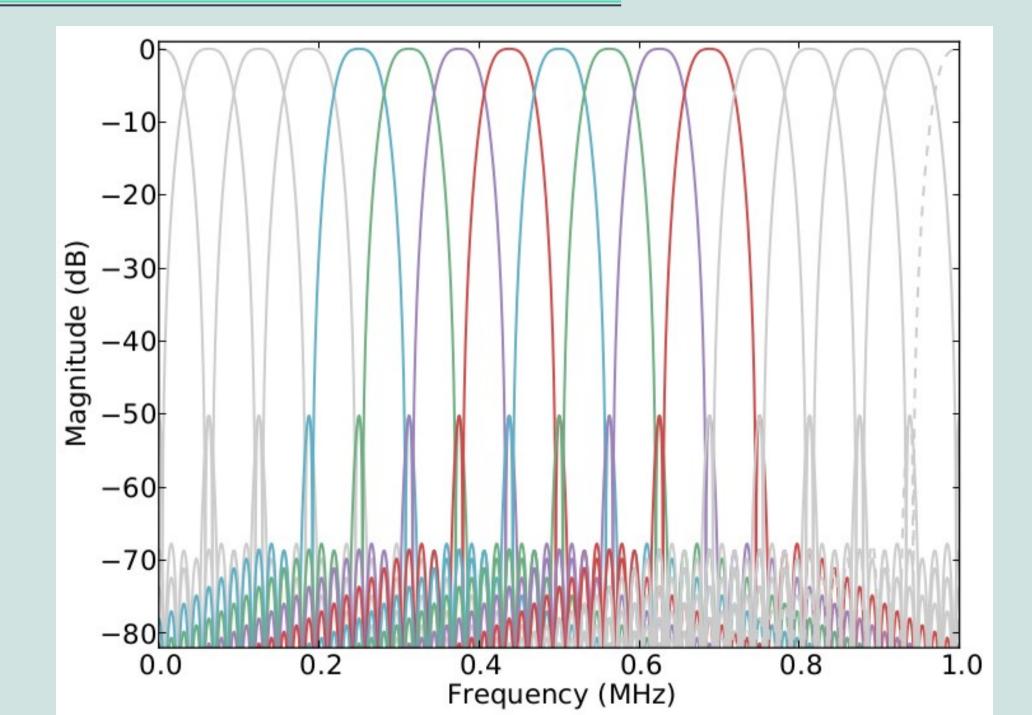
NASSP 2016

Finite Impulse Response (FIR) Window Functions

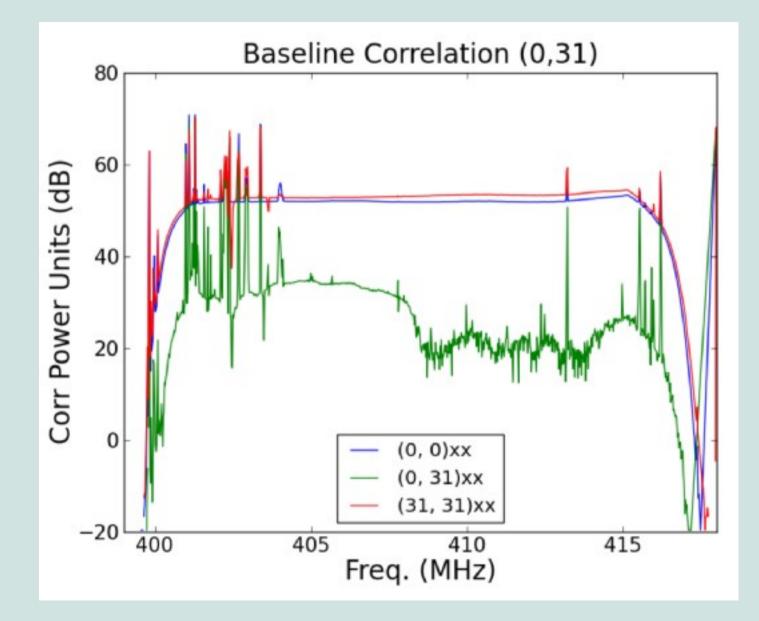


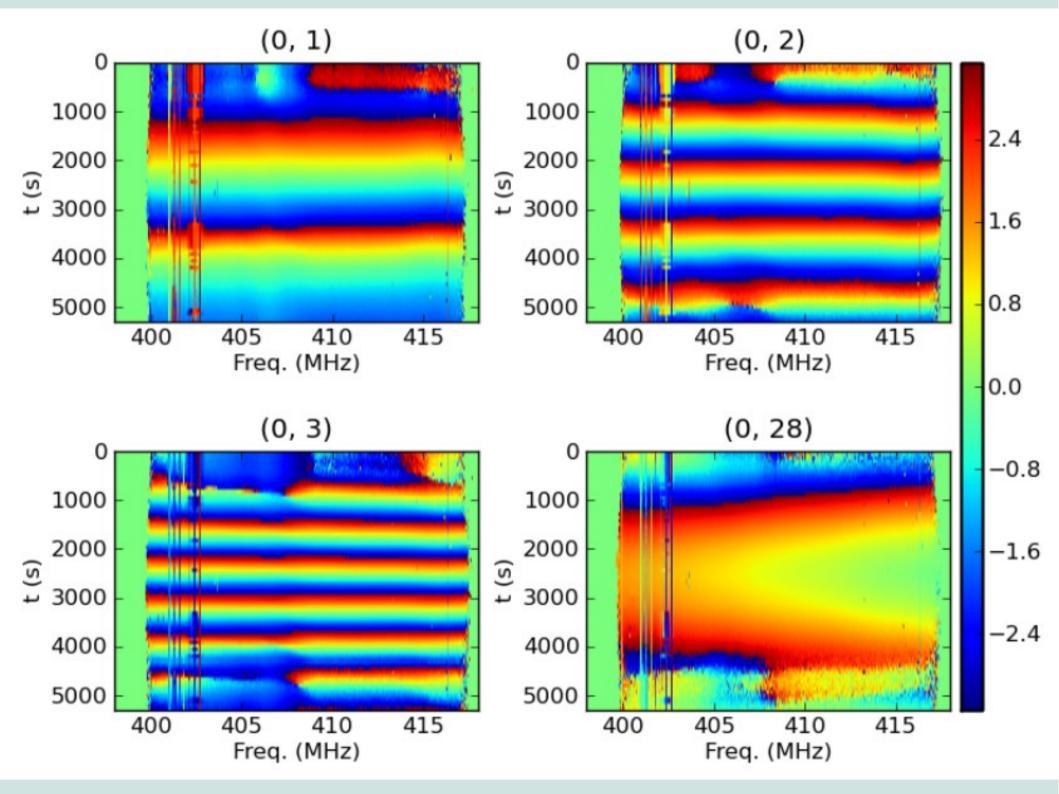


Polyphase Filter Banks (PFBs)



Baseline Spectrum



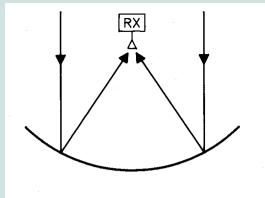


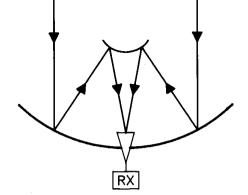
$$\mathbf{E}(\theta,\phi,\nu) = \begin{pmatrix} E_{l\to l}(\theta,\phi,\nu) & E_{l\to r}(\theta,\phi,\nu) \\ E_{r\to l}(\theta,\phi,\nu) & E_{r\to r}(\theta,\phi,\nu) \end{pmatrix}$$

The *position-* and *frequency-*dependent effect of the physical structure.

Potentially also *time*-dependent in the case of an Altitude-Azimuth mount.

Prime Focus (GMRT)

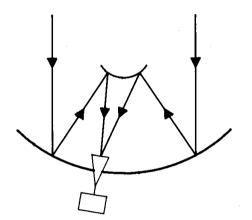


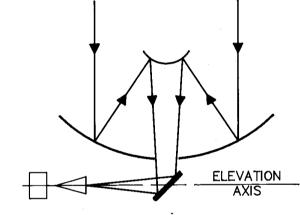


Cassegrain (ATCA)

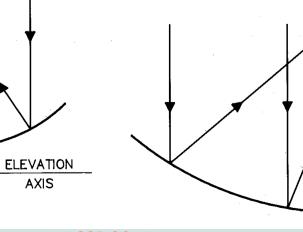
Offset Cassegrain (VLA)

Bent Nasmyth (SMA)









NASSP 2016

AXIS

Offset Gregorian (GBT)

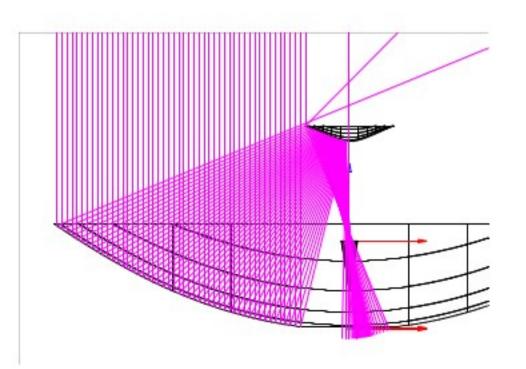
T. Hunter NRAO SIW 14

Aperture Efficiency

$\eta = \eta_{surface} \eta_{blockage} \eta_{spillover} \eta_{taper} \dots$

- $\mathbf{\eta}_{\text{surface}}$: any surface has reflective loss
- $\mathbf{n}_{_{\mathrm{blockage}}}$: the structure above the dish block a portion of the light (to Oth order)
- ${f \eta}_{
 m spillover}$: loss due to the caustic illumination onto the receiver feed
- $\mathbf{\eta}_{_{taper}}$: there is a radius dependent loss with respect to illumination

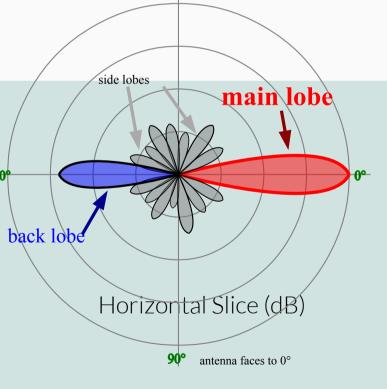
These efficiencies are approximate metrics, in reality, a electro-magnetic model of the primary beam provides a more complete description



119.3

106.7

100.4 94.15 87.87 01.59 69.04 62.77 56.49 50.21 43.54 37.66 31.31 25.11 18.83 12.56 6 262 0.00625 Power Density (HWMr 2) Distance (HM) 1000 Zc (One) 376.73 Theta (deg) 0 25 180 PN (deg) 0 5 360



270°

Directivity: a figure of merit which is a measurement of an antenna's power in the direction of strongest emission versus an isotropic (all-direction) antenna

Electrical efficiency: efficiency at which a receiving system converts radio power

Gain: Combination of the antenna directivity and efficiency

Phased Array Antenna Handbook : Mailloux

NASSP 2016

Leakage between orthogonal feeds:

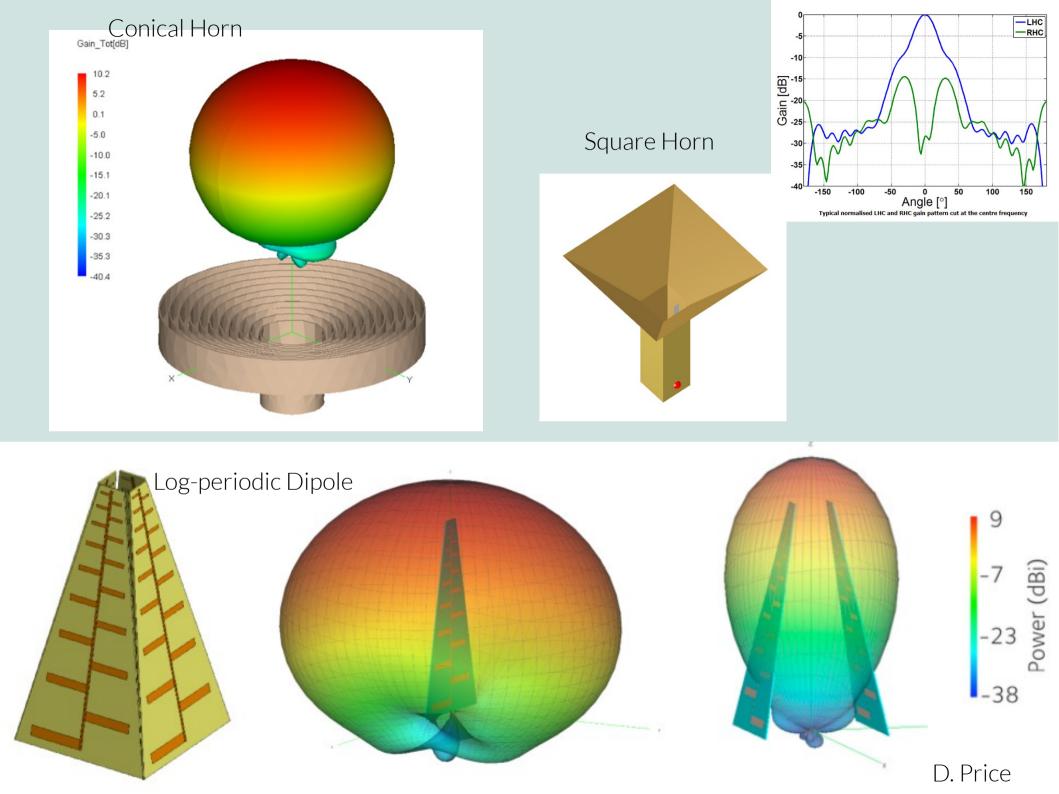
$$\begin{split} \mathbf{D}(\theta,\phi,\nu) &= \begin{pmatrix} 1 & d(\theta,\phi,\nu) \\ d(\theta,\phi,\nu) & 1 \end{pmatrix} \\ d << 1 \end{split}$$

Configuration matrix to convert between reference frames, such as linear to circular:

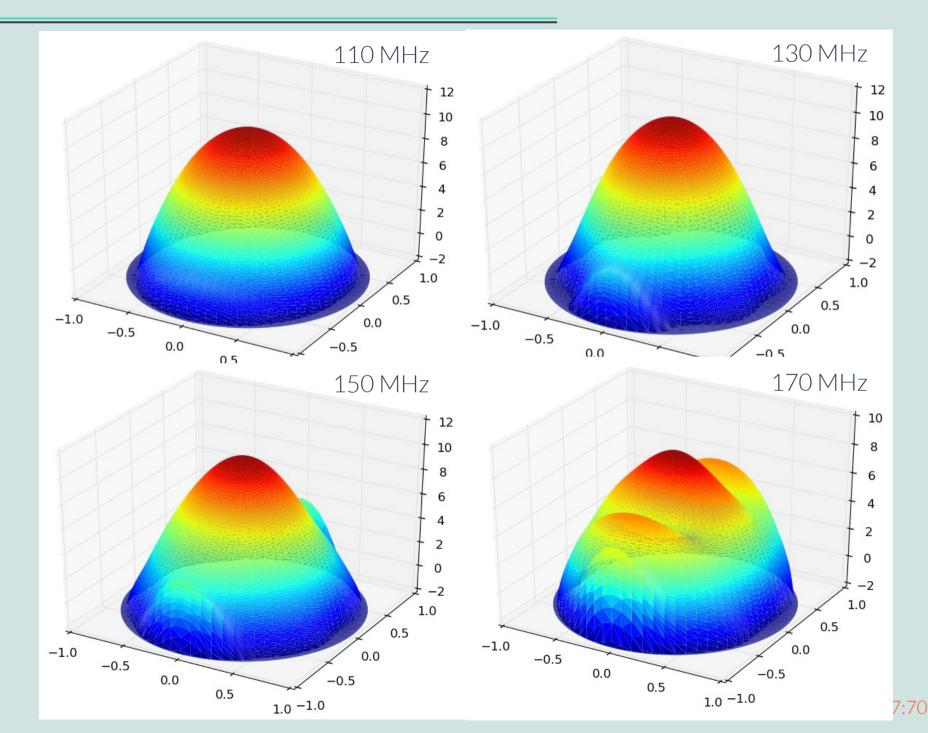
$$\mathbf{C}_{\mathrm{lin}\leftrightarrow\mathrm{circ}} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & i \\ 1 & -i \end{pmatrix}$$

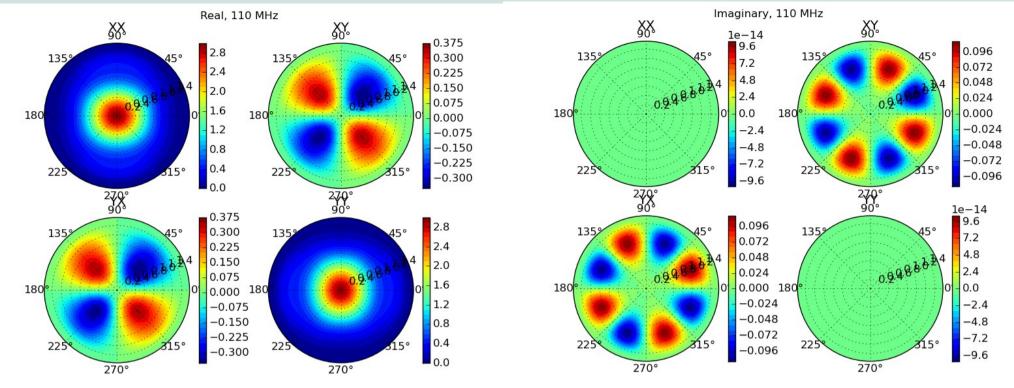
Receivers (D- and C-Jones)

NASSP 2016

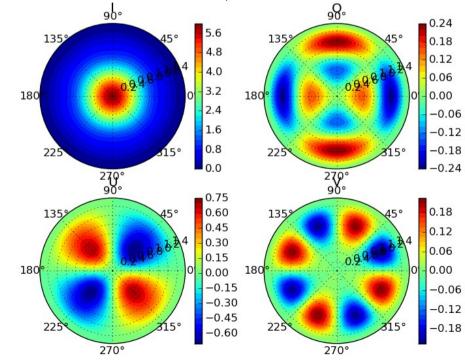


Receiver Frequency Dependence





Jones representation conversion to Stokes Parameters



$\mathbf{M}_{\mathbf{E}} = \mathbf{S}^{-1} \left(\mathbf{E} \otimes \mathbf{E}^* \right) \mathbf{S}$

58:70

If a source is circularly polarized, there is no signal loss using an orthogonal linear feed system. And the same for a linearly polarized source and circular feeds system.

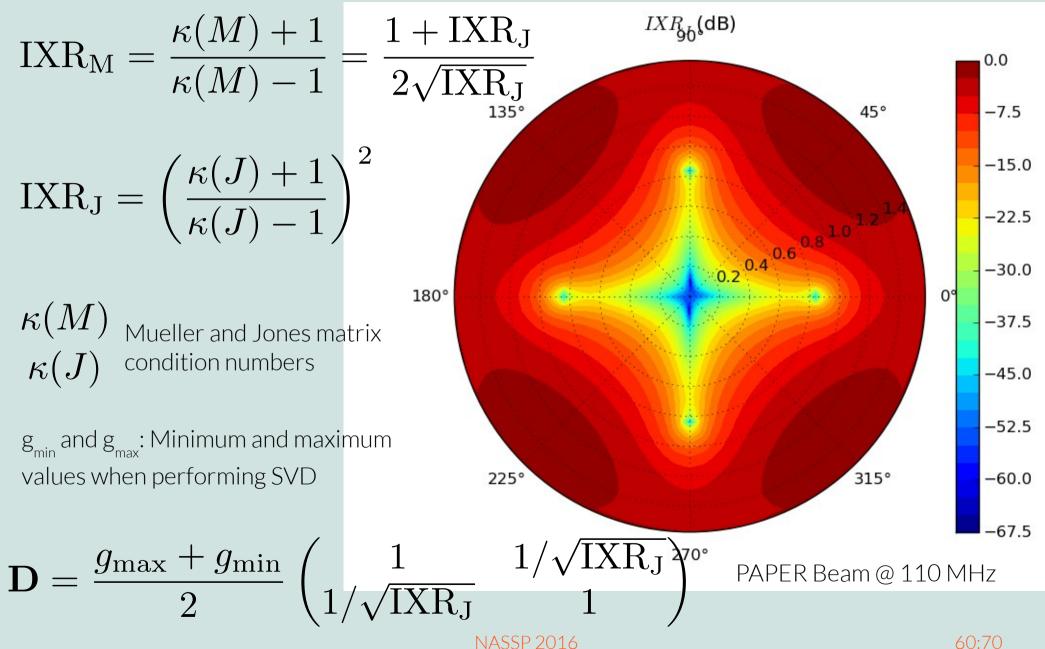
So, ideally, if we are measuring a source with a particular polarization we would use the other polarization type as the receiver feed. But, in reality certain feed types are desirable for different designs.

Conversion between linear and circular basis is done via a *quarter wave plate*.

$$\mathbf{C}_{\mathrm{lin}\leftrightarrow\mathrm{circ}} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & i \\ 1 & -i \end{pmatrix}$$

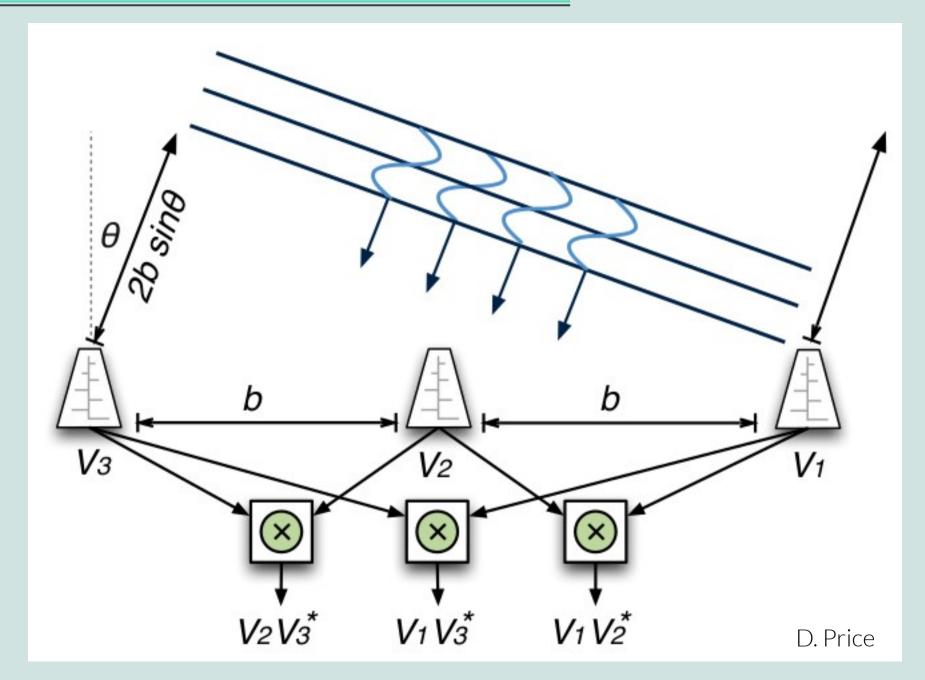
Polarization Leakage (D-Jones)

Intrinsic Cross-Polarization Ratio (IXR) [Carozzi & Woan 2011]

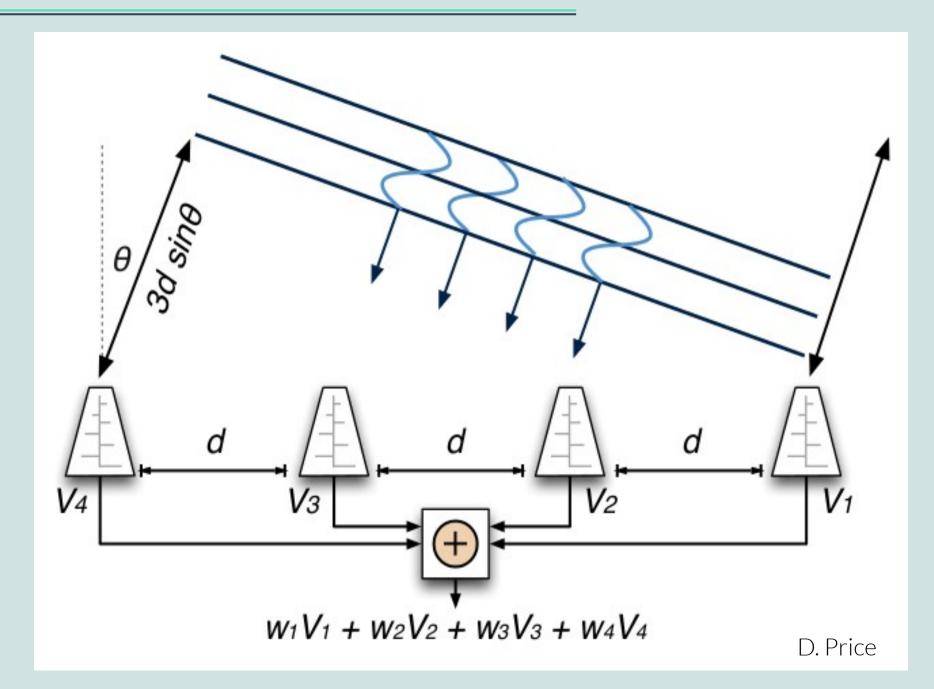


New Technologies

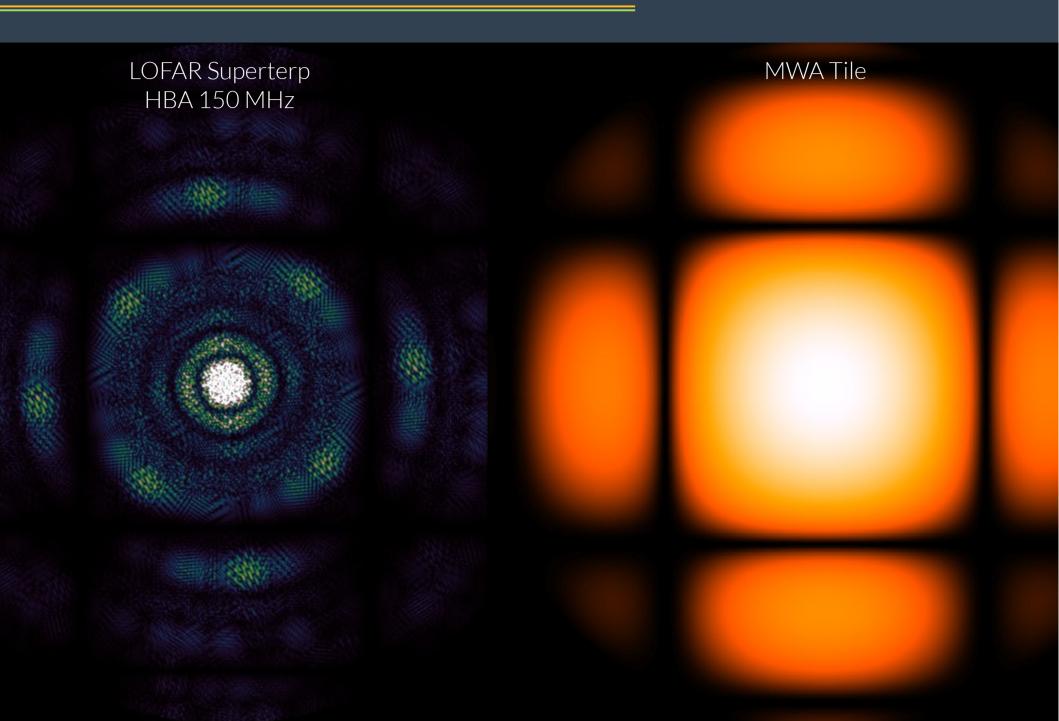
Simple Interferometric Model



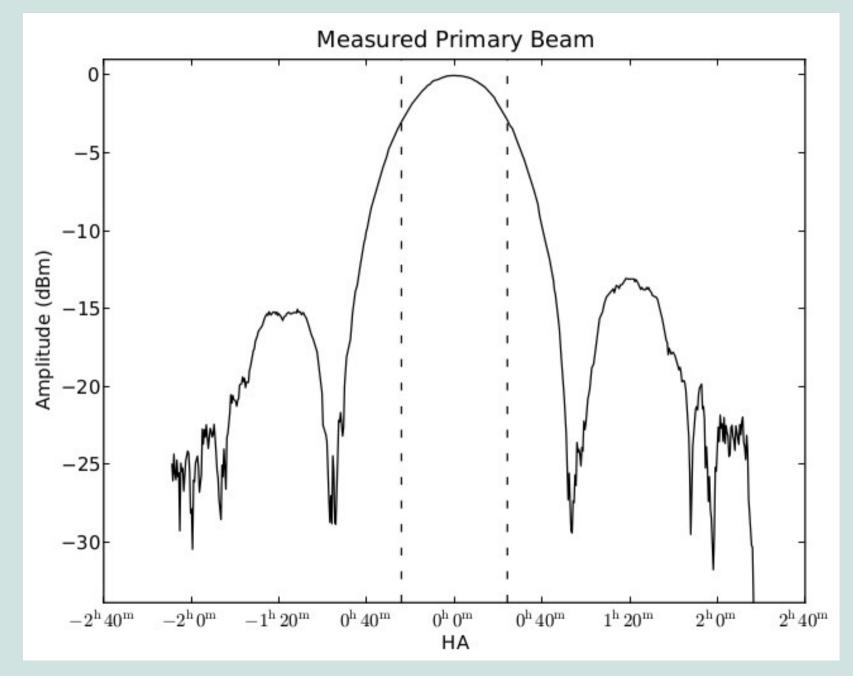
Simple Beamformer Model



Beamformer Response

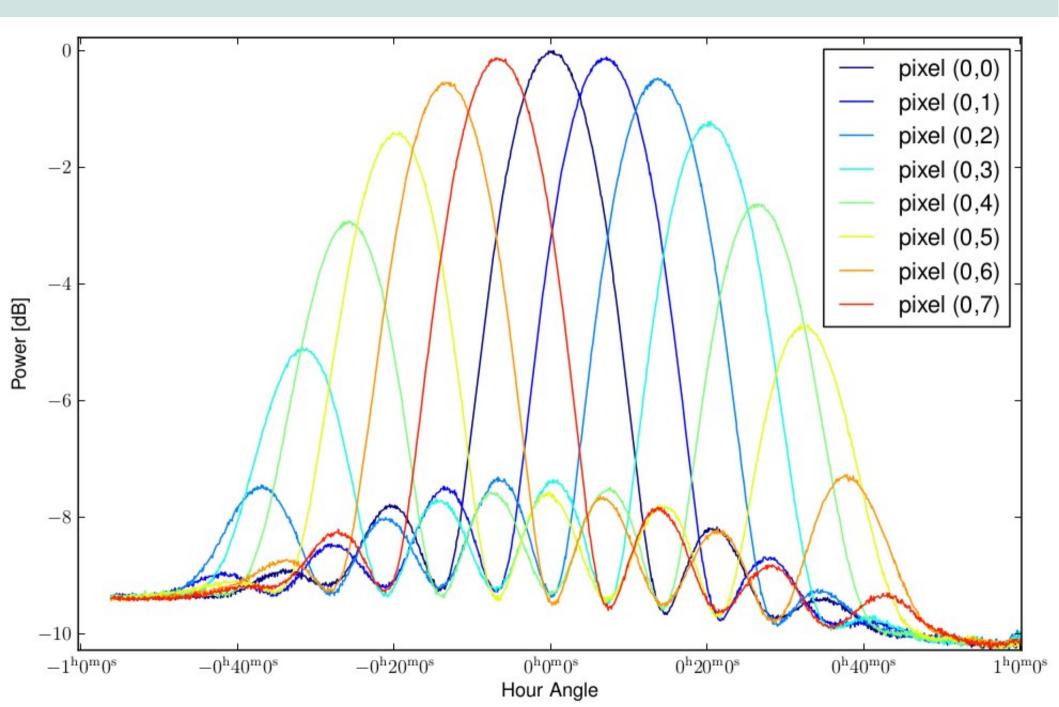


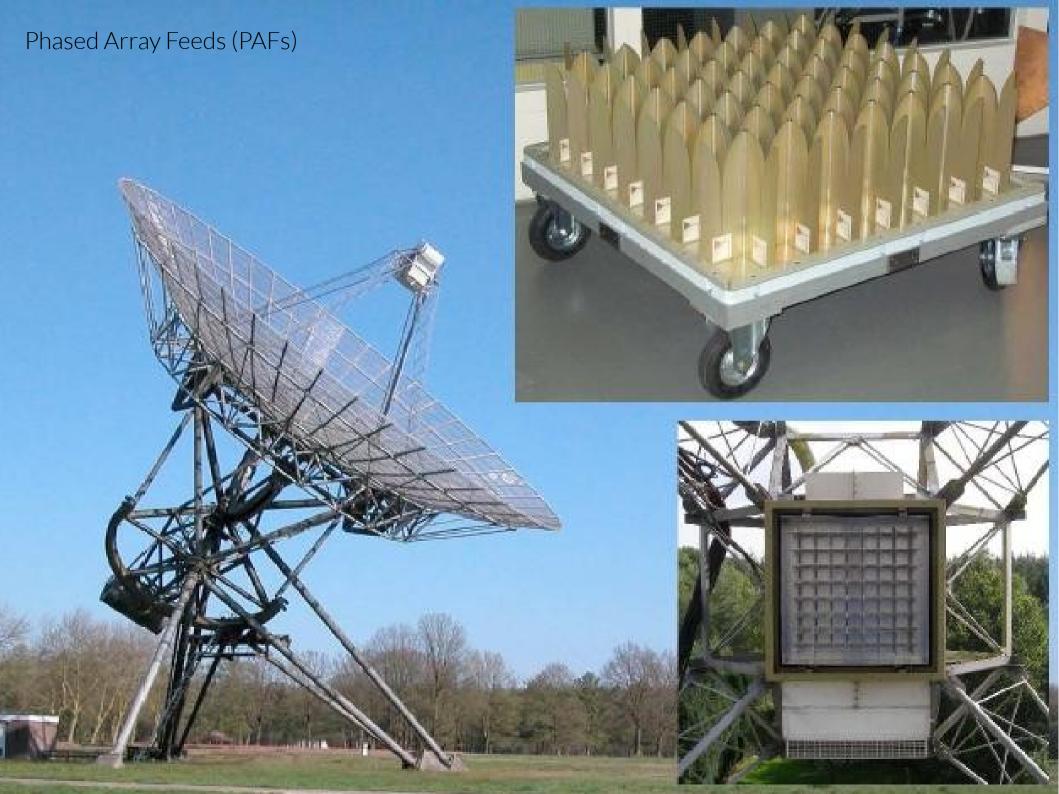
Beamformer Response



NASSP 2016

Beamformer Response





Aperture Arrays

LOFAR Superterp

