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Any measurement is a noisy filter which 
results in a loss of information.
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Jones Chains

Multiple propagation effects 
can be described by chaining up 
Jones matrices:
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Enter The Antenna

A dual-receptor feed 
measures two complex 
voltages (polarizations):

We may further assume the voltage 
conversion process is also linear. 
Therefore we have:
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Jones Sequences

● This is just an example!
● Order is important: matrices don't (in general) commute

– Must follow physical order of propagation effects
● Some specific matrices do commute

– Scalar matrix (K-Jones) commutes with everything
– Diagonal matrices commute among themselves
– Rotation matrices commute among themselves
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An Idealized Source
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Noise as Temperature

Johnson-Nyquist noise source (thermal source):

For a fixed bandwidth, rearranging:
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System Temperature

T
sky

: radio sky background (synchrotron, CMB (2.76K), ...)

T
atmosphere

: atmospheric foregrounds (important at mm wavelengths)

T
spillover

: pick-up of ~300K ground in the side and back-lobes

T
rx

: receiver temperature from the Friis Cascade Noise Equation
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System Temperature
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System Temperature

T
passive

: passive components (cables, connectors, OMT) before the LNA

T
LNA

: Low-Noise Amplifier temperature

T
amp

: secondary amplification/attenuation temperature

G
LNA

: gain of the LNA

G
feed

, G
passive

: feed and passive 'gain' (related to efficiency)
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Radiometer Equation

C. Copley

σ
T
: residual (root-mean-square) in the

measurement 

Δν: bandwidth of observation (Hz)
τ: integration time (seconds)

 → the smaller the T
sys

 the shorter the

required observation time
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System Equivalent Flux Density (SEFD)

flux density of a radio source that doubles the system temperature

Very Large Array SEFD

https://science.nrao.edu/facilities/vla/docs/manuals/oss/performance/sensitivity
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Analogue Front-end (G- and B-Jones)

Amplitude and attenuation due to the system electronics. 

The total, time- and frequency-dependent gain Jones matrix is 
often split into a gain (G) and bandpass (B) Jones matrices.
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Analogue Front-end (G- and B-Jones)

ADC

Local  
Oscillator (LO)

Mixer

Notch/  
Bandstop  

Filter
Bandpass  

Filter

Amplifier

Low Noise  
Amplifier (LNA)

Receptor/  
Receiver

Balun

T=20 K

T=70 K
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Analogue Front-end (G- and B-Jones)
Local Oscillator (LO)

Amplifiers

Filter

Splitter

Mixer
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Cryostat

C. Copley
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Decibel Units

Power: 

Voltage Amplitude: 
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An Idealized Source
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Low Noise Amplifier (LNA) Response
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Low Noise Amplifier (LNA)
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Bandpass Filter
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Narrow-band Radio Frequency Interference (RFI)
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Narrow-band Radio Frequency Interference (RFI)
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Narrow-band Radio Frequency Interference (RFI)
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Narrow-band Radio Frequency Interference (RFI)
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Notch/Bandstop Filter
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Notch/Bandstop Filter
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Notch/Bandstop Filter

C. Copley
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Notch Filter Applied to RFI
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Hetrodyne Mixing

By trigonometric identity the multiplication of two sine waves is:

Applying a low pass filter: 

The output frequency is:
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Add in System Noise
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Analogue Response to an Ideal Source
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Digitization (Ideal Dynamic Range)
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Digitization (Limited Dynamic Range)
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Digitization (Increased Dynamic Range)
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Digitization (Saturation)
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Low bit resolution quantization and
efficiency

Key point: assuming a Gaussian signal
(i.e. Astronomical signals), we only need
4 bits to get 98.9% efficiency

J. Hickish

Quantization Efficiency
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The Basic RIME

This gives us the basic form of the RIME:

Measured
correlation

Intrinsic 
source

parameters

Propagation 
to antenna p

Propagation 
to antenna q
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Correlation

A correlator computes four complex pairwise 
products called correlations.
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Convolution Theorem and Correlation

To compute visibilities, we would like to correlate (convolve) for each antenna pair (f,g)

Convolution Theorem:

Where the convolution symbol is defined as:
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Cost: O(NM log(M) + MN2)
M: frequency channels
N: number of antennas

Auto-correlations Cross-correlations

FX Correlator
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FX Correlator

FFTFIR
PFB

FFTFIR
PFB

FFTFIR
PFB

FFTFIR
PFB

FFTFIR
PFB

FFTFIR
PFB

CMACs

CMAC

F
O(M log M)

Correlation Matrix

X
O(N2)
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DFT Cost: O(N2)
FFT Cost: O(N log N)

Discrete Fourier Transform (DFT)

Almost all FFT implementations use a radix-2 system, so FFT of size 2N are ideal. Try to avoid Fourier 
transforms of prime number size.

Radix-2 DIT 8-point
Cooley-Tukey FFT

Fast Fourier Transform (FFT)
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Polyphase Filter Banks (PFBs)
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Baseline Spectrum
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Primary Beam (E-Jones)

The position- and frequency-dependent effect of the physical structure.

Potentially also time-dependent in the case of an Altitude-Azimuth mount.
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T. Hunter NRAO SIW 14

Prime Focus (GMRT)

Offset Cassegrain (VLA)

Bent Nasmyth (SMA)

Cassegrain (ATCA)

Nasmyth (CARMA)

Offset Gregorian (GBT)
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Aperture Efficiency

C. Copley

=η η
surface

η
blockage

η
spillover

η
taper

...

η
surface

 :  any surface has reflective loss

η
blockage

 :  the structure above the dish block a portion of the light (to 0th order)

η
spillover

 :  loss due to the caustic illumination onto the receiver feed

η
taper

 :  there is a radius dependent loss with respect to illumination

These efficiencies are approximate metrics, in reality, a electro-magnetic model
of the primary beam provides a more complete description
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[Title of light page]Parabolic Dish beam pattern

Horizontal Slice (dB)

Directivity: a figure of merit which is a measurement
of an antenna's power in the direction of strongest
emission versus an isotropic (all-direction) antenna

Electrical efficiency: efficiency at which a receiving
system converts radio power

Gain: Combination of the antenna directivity and
efficiency

Phased Array Antenna Handbook : Mailloux
antenna faces to 0°

main lobe
side lobes

back lobe
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Receivers (D- and C-Jones)

Leakage between orthogonal feeds:

Configuration matrix to convert between reference frames, 
such as linear to circular:
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Receivers (D- and C-Jones)

Linear Horn

Circular Horn
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Log-periodic Dipole

Conical Horn

Square Horn



NASSP 2016 57:70

Receiver Frequency Dependence

110 MHz 130 MHz

150 MHz 170 MHz
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[Title of light page]

Jones representation conversion to Stokes Parameters
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Measurement in Basis Set

If a source is circularly polarized, there is no signal loss using an orthogonal 
linear feed system. And the same for a linearly polarized source and circular 

feeds system.

So, ideally, if we are measuring a source with a particular polarization we 
would use the other polarization type as the receiver feed. But, in reality 

certain feed types are desirable for different designs.

Conversion between linear and circular basis is done via a quarter wave plate.
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Polarization Leakage (D-Jones)

Intrinsic Cross-Polarization Ratio (IXR) [Carozzi & Woan 2011]

PAPER Beam @ 110 MHz

Mueller and Jones matrix
condition numbers

g
min

 and g
max

: Minimum and maximum

values when performing SVD
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New Technologies



NASSP 2016 62:70

Simple Interferometric Model

D. Price
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D. Price

Simple Beamformer Model
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Beamformer Response

LOFAR Superterp
HBA 150 MHz

MWA Tile
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Beamformer Response
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Beamformer Response
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ExtraPhased Array Feeds (PAFs)
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ExtraTransiting Arrays
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Extra

Aperture Arrays

LOFAR Superterp
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Extra
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